圆柱的体积教学反思15篇
作为一位优秀的老师,我们的任务之一就是教学,对学到的教学新方法,我们可以记录在教学反思中,那么教学反思应该怎么写才合适呢?下面是小编为大家收集的圆柱的体积教学反思,希望能够帮助到大家。
圆柱的体积教学反思1对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。
对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“V=Sh”而不是“V=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,V=Sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的S罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的关系”,还不如只观察两者的底面积S。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的缘故。
对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。
圆柱的体积教学反思2本节课是在学生已经学习了圆柱的体积计算公式的基础上开展的,大多数学庭作业已经能够熟练运用体积公式计算直观圆柱形容器的容积,这对本节课的后续计算莫定了良好基础。但是对生通过上节课的课堂练习以及家于例7中非直观圆柱形容器的容积计算,很多同学一开始无处着手。通过课件将瓶子正置及倒置的情况分开讨论,然后逐步引导,从而最终使学生明白该瓶子的容积在数值上就相当于两个小圆柱的体积。紧接着,两个及时的模仿练习再次让大家感受到解决此类问题的关键就在于“转换”和“构建”,即:将无法直接计算体积的物体转换成可计算体积的物体的体积;又或者将原不规则的物体换个角度或方向,从而便于我构建新的可计算体积的物体,进而得出解题思路和问题答案。
对于“转化”这种数学思想的培养,在教学过程中多进行一些引导性提问,给于学生足够的思考讨论时间,尽量让学生自己分析出思路,享受到成功的快乐,从而增强学生的自信心,提高学习兴趣。
圆柱的体积教学反思3案例背景:
《数学课程标准》指出:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括形成方法和理论并进行广泛应用的过程。这一描述,明确了小学数学的内涵,即数学学习是一个过程。近日,在市小学数学名师课堂教学展示中,天福小学的刘爱芳校长执教的《圆柱的体积》一课,使我对个人的专业素养和课堂的设计内涵,都有了很深的触动。
案例描述:
片段一:
师:同学们,往这里看,今天老师带来了三件物体:玻璃杯、橡皮泥、金属零件。这三件物体有什么共同点?
生:都是圆柱。
师:圆柱形的物体生活中很多,以这三样为例,你能提出哪些数学问题?
生1:水杯的容积是多少?
生2:水杯的表面积是多少?
生3:水杯的体积是多少?
师:这三个问题很好,我们记下一个。
师板书,水杯容积
生继续提出关于橡皮泥和金属容器的体积的问题,师板书:橡皮泥体积,金属零件体积。
师:关于表面积的问题前面我们已经研究过,这节课我们来研究圆柱体积的问题。
师板书:圆柱体积
师:以你现在的知识储备,你能解决哪个问题?
生:水杯的容积
师:怎样求?
生:可以把水杯的装满水,倒进一个长方体的容器中,计算出长方体容器中水的体积,也就求出了水杯的容积。
师:瞧,“装满水”,“满”这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。
师板书:倒---长方体,转化。
师:在转化过程中,水的什么变了?什么没变?
生:水的形状变了,体积没变。
师:水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?
师:根据学生回答分别板书:捏---正方体,浸----长方体。
师:刚才我们根据这三个物体的共同特点,通过转化,把它们转化成我们以前学过的长方体或正方体的体积。是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?
生:不能。
师:为什么?
生交流,得知物体很大时,没法进行转化。
师:因此,我们需要寻找一种通用的方法,你想到了什么方法?
生:计算。
师:圆柱体体积与什么有关?猜想一下怎样计算?
……此处隐藏9705个字……者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!
圆柱的体积教学反思13这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“ 从生活中来到生活中去” 的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题多在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。的思想。
三、练习时,要形式多样,层层递进
例题“ 练一练” 中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型:
1 .已知圆柱底面积(s )和高(h ),计算圆柱体积可以应用这一公式:V=sh
2 .已知圆柱底面半径(r )和高(h ),计算圆柱体积可以应用这一公式:V=πr?h 。
3 .已知圆柱底面直径(d )和高(h ),计算圆柱体积可以应用这一公式:V=π(d/2)?h 。
4 .已知圆柱底面周长(c )和高(h ),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)?h 。
5 .已知圆柱侧面积(s 侧)和高(h ),计算圆柱体积可以应用这一公式:V=π(s 侧÷h÷π÷2)?h 。
在巩固练习中,只要从这五种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。
圆柱的体积教学反思14“圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的一堂课。
课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。
展开局部,教师为同学提供了动手操作、观察以和交流讨论的平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。
练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自身的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
圆柱的体积教学反思15圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生在学习的过程中体会到数学给自己带来了巨大的成功感和喜悦感,我们老师这样才能寓教于乐,从而达到了事半功倍了。
本节可的教学内容是九年义务教育六年制小学教学第十二册﹙人教版﹚《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=S和,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。