中心对称教学反思

时间:2024-07-13 20:15:43
中心对称教学反思

中心对称教学反思

作为一名人民老师,课堂教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,优秀的教学反思都具备一些什么特点呢?下面是小编为大家整理的中心对称教学反思,欢迎大家分享。

中心对称教学反思1

应该说《中心对称》这节课的教学效果与我设计的预期效果差不多。学生的配合度比较高。师生的研究学习互动的氛围比较活跃。听课教师给这节课下了比较高的评价。关于新课程的理念和数学思想方法用得比较到位。这给我莫大的鼓励,让我对课改充满信心。我的这节公开课在设计时注重了把我们数学组的课题研究和师生共用教学案进行了渗透和整合。而我们的数学课题是《对学生数学学习过程中问题生成的预设与解决》。

1、设计流程:图片欣赏-----中心对称图形-----应用-------图片欣赏------成中心对称----性质与判定----应用-----练习与反馈----小结。

2、主要用意:通过观察图片引起学生的兴趣,欣赏图片让学生在学习中体验数学中,中心对称的美,从实际图片的设计着手引入新课,在图形的运动变化中进行概念的教学,在观察中思考中心对称的性质以及如何识别。在例题的选择时注意加强中心对称的应用。在问题预设中注重学生的发展。出现问题或疑问时,加强了引导。注重对学生学习过程中问题的解决。在这节课上想让课题的研究要有一定的体现。把课题的研究内容和问题设置,在该课中得以融入,并有所表达一定的思想内涵。按教材课本的要求,我让同学们欣赏图形、感受图形、识别图形,进而理解中心对称和中心对称图形的概念,体会对称中心的位置以及意义和价值,并感受中心对称图形与成中心对称的转化关系。在上课时,让学生们欣赏图形,观察图形,然后再理解图形,进一步识别图形,从而把概念教学融入其中。教学时根据新授内容预设学生可能出现的问题,加强应变并解决问题。我上课时以教学案为裁体,协调好课本教材、教学案和课件,注重从学生实际出发,上课以学生为主,加强学生的活动性、参与性,有意识的突出学生的主体地位,让学生有思考问题的时间和空间。在学生讨论“中心对称与中心对称图形”时,注重从整体的眼光中看待问题,让学生学会相互转化。当学生出现把对称中心这个名词说成中心点时,我及时板书加以强调。在板书设计中注重书写跟数学思想方法有关的内容,如“整体、组合、分割、转化”这样做使得学生学一定的数学思想方法,做到了潜移默化。在遇到预设不到的问题方面,充分地让学生主动参与,自主解决,充分发挥每个学生的参与意识和学习热情。对学生将会出现的问题作估计,课上解决,课后反思。

3、不足之处:一、在分割长方形时可以进行变式教学,应问:同学们,如果是平行四边形呢?菱形呢?正方形呢?等等;二、根据学生的实际情况请学生画一个点关于对称中心对称的点时应在分析后进行现场演示,这样更加符合学生学情。三、我对学生的营造快乐学习研究氛围并不够。四、课题中有关问题:对学生学习过程中问题预设不到的问题要加强研究。

在传统的数学课堂教学中,学生和教师都会因为学和教的问题而影响质量和效果。以数学课堂教学为主阵地,以现行的数学教学案为主要内容,以数学组研究教师对学生数学学习过程中问题生成为契机,通过研究可能出现的问题,使学生在学习过程中尽量避免错误,少走弯路,轻负高质,获得更多的知识与技能。为此我们八年级数学组,在润州区教育系统各级领导的关怀和帮助下,我们开展了小课题的研究,这将有利于教师因材施教,更有利于教师往研究型发展和提高。从而切实提高课堂效率,真正实现以教学案为载体的课堂教学发展目标。

所以结合课题研究思路:教学案为载体的教学过程中学生学情相结合而对学生教学问题生成的预设与解决。指出重要观点:因问题而教,因问题而学,以变化而变化。

从而突出数学课题的主要研究思路:

㈠导学方面问题解决:体现新知识中数学问题的情境性和可接受性。设计一些问题情境引入新课,使学生可以将导学内容得以掌握,并能独立自学解决一定的数学问题;

㈡例题分析与变式训练中的问题解决:例题分析体现数学问题的呈现方式,并进行变式训练。

㈢课堂练习与课后作业的问题解决:课堂练习的反馈与反思,作业问题的反馈与反思;学生态度与积极性的培养。

总之,我们将以小课题为指导,以教学案为抓手,在反思中学习,在实践中积累,突出效率,提升教学质量。

中心对称教学反思2

本课是明确中心对称图形与中心对称的教学,我非常重视本节开头的教学内容,采用做游戏摆扑克的方法引入教学,激发学生的学习兴趣,在进行了解中心对称的概念时我采用了让学生观察分析探讨,使学生从感性认识上升到理怀的认识。从实例出发,展现知识的形成过程,使学生不会感到数学知识学习的单调乏味,逐步提高学生抽象概括的能力。

初二学生对一些“动”图形很感兴趣,为此本节采用了动画形式,让学生亲身体验;从而使学生易于发现、总结。教学时以启发和小组讨论交流为主,进行谈话式的引导,并注意利用变式练习题,准备开放性的习题配合,归纳小结注意点,以期达到调动学生学习的积极性,使学生的思维更加活跃,迸发出创新的火花,让学生在理解的基础上掌握中心对称的有关知识。

为了突破重点、难点,我采用了分组讨论、学生启发、实例分析的方法让学生自主说出来;相互补充,学会合作。培养了学生的良好学习习惯与和谐融洽的教学气氛。在整个教学过程的设计中师是朋友、是合作者;讲解则是学生探索结果的概括,对学生的鼓励调动了学生的积极性。

本节在调动学生积极上还存在着一定的不足。比如:有的学生发现问题却不能主动提出来。教学中的学困生虽然有了一定的进步,但还有待于提高。

中心对称教学反思3

在教学中以出示旋转对称图形为切入点,让学生在复习旋转对称图形的知识上导出新的知识,这样有助于学生在原有的知识体系的基础上构建新的知识体系,有助于新的概念的掌握。

学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的区别,让学生在类比和辨析中更好地掌握中心对称图形这一概念。

中心对称图形的概念是本课重点,课前我和学生一起玩魔术,准备四张扑克牌,三张不是中心对称图形的牌,一张是中心对称图形的牌,老师背过身,让学生任意转一张牌,老师都能猜出,让学生想为什么,同学们想不想学会这个本领?学习这节课的知识,你也会这个本领了。对于刚才所提出的问题学生急于知道,但仅利用现有的知识技能又无法解决,从而形成认知的冲突,这就激发了他们的求知欲,使学生在问题最集中,思维最活跃的状态下开始学习。通过一堂课的学习,在课堂结束时又回到了这个问题上,同学们明白了课前魔术表演的奥秘,也其乐融融地投入了 ……此处隐藏2101个字……一优美意境中即兴创作了一首诗,当时就有一个学生提出朗诵一下自己的一首诗,后来竟然出现班里大部分学生都要求做诗,没有想到这个老师竟然答应了,这节课后来竟上成了赛诗课。你怎样评价这样的一节课呢?但是,学生们乐意,参与度也特别高,我感觉这节课孩子们的收获是不小的,比老师中规中具地上一节课更能激发学生对语文的热爱。

(二)公开课中的“假活跃”与“真沉闷”

有时,公开课上有的问题设计导向性太明了,干涉或控制了学生的思维,明显带有程式化,缺乏教学过程中应有的生气。课堂上有一段时间,学生好像成了配合我上课的配角,没有给足学生应有的思考空间,失去了学生的主体作用。教学过程中学生只是被动的回答问题,很少主动的提出问题;特别是教师一对多的问答,其实一问一答的机械形式,是一种无实质性交往的“假”对话,是一种变相的灌输式教学,后果是:看着热闹,实则沉闷。人的好奇心是天生的,初中学生的认知特点决定了他们拥有探求新异事物的天然需要。孔子说:“知之者,不如好之者;好之者,不如乐之者”,他强调的就是兴趣。兴趣就是学生积极探索某种事物的认识倾向,这是大家所熟知的一条真理;教师在课堂教学中如能恰当地运用情境激起学生的兴趣,可以取得很好的教学效果。但是,教师上课时,往往讲的有点多而让学生思考、提问、交流的有点少,无论是学生与学生之间或是老师和学生之间,交流意味着上课不仅是传授知识,而是一起分享理解,促进学习,你有一个思想、我有一个思想,经过交流都有了两个思想或碰撞后的多个思想;上课不仅是单向的付出,而是生命活动、专业成长和自我实现的过程。

上课时,引发学生的探究兴趣、给学生以信心,是老师的一个重要任务。

课后的一点反思,和大家共同交流。

中心对称教学反思6

本节课是建立在“轴对称”、“图形的旋转”基础之上,进一步学习特殊的图形旋转——中心对称,主要介绍中心对称的概念和性质。本节课的重点是中心对称的概念;难点是中心对称的性质和应用。 为了使学生感受、理解知识的产生和发展过程,鉴于本节教学内容的特点和学生的心理特征,我确定了以启发、实践、交流为主的教学方法。努力培养学生观察、思考、交流、合作的学习品质和猜想、类比、归纳、概括的思维习惯,对激发学生探索精神和创新意识等方面都具有重要意义。为了培养学生的抽象思维,我通过了大量课件,把动态的问题直观地表现出来,使学生更容易理解并掌握中心对称的概念和性质。

本节课,从学生已有的生活经验出发,引导学生通过各种形式的活动,从数学的角度去观察事物、思考问题,使学生真正实现由“学会”到“会学”的质的飞跃。

1、创设情景,引入新知

首先,复习轴对称的概念与旋转的定义、性质。观察课件,回答问题:

①请观察左图(课件)的变化,你有什么发现?

②线段AC与BD相交于点O,OA=OC,OB=OD,观察△AOB的变换过程,你有什么发现?从旋转变换的角度引入中心对称的概念,让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180°),渗透了从一般到特殊的数学思想。

2、动手实践,探究新知

学生在教师的引导下动手操作,完成63页探究,旋转三角板,画关于点O对称的两个三角形,通过学生的动手操作,自主探索中心对称的性质:学生画出两个中心对称的三角形后,及时开展中心对称性质的研究,归纳出中心对称的性质: (1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; (2) 关于中心对称的两个图形是全等图形。让学生尝试自己证明△AOB与△A′B′C′全等。

3、应用新知

(1)讲授64页例1。

在本次活动中,教师应重点关注:学生画出图形后,能否加深对中心对称的性质的理解;学生不同的作图方法。

(2)课后练习。以适当的练习巩固本节课的知识点,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质。

4、归纳小结

说说你在本节课的收获。学生总结发言,不足之处由其他学生补充完善,教师应重点关注不同层次的学生对本节知识的理解、掌握程度,相互交流学习过程中的感受、收获。

本课由问题引入概念,从而激发学生研究问题、解决问题的欲望。接着,让学生动手操作,直观地得出两个图形关于某点对称这一概念,并加深对概念的理解。充分利用多媒体演示,尽量使问题直观化,帮助学生掌握概念、性质和画法,效果较明显。

通过本节课的教学,我有如下建议:

1、从旋转定义引入中心对称的概念。先让学生弄清旋转角等于180°的两个图形之间的关系(借助多媒体演示,加深学生印象),进而引出中心对称的定义。

关于中心对称的定义,学生要体会到以下三层意思:

(1)有两个图形,能够完全重合,即形状大小都相同;

(2)对重合的方式有限制,也就是它们的位置关系必须满足一个条件:将其中一个图形绕某点旋转180°后能够与另一个图形重合;

(3)也就是说,全等的图形不一定是中心对称的,而中心对的两个图形一定是全等的。

2、可以将中心对称和轴对称进行对比:

轴对称中心对称区别对应点连线被对称轴垂直平分对称点的连线均经过对称中心,且被对称中心平分联系对称的两个图形全等

3、学生通过观察可以发现:中心对称是旋转的一种特殊情况,中心对称的性质与旋转的性质类似,主要区别在于对应点在一条直线上,旋转角是固定的180°。第一个性质很重要,要使学生明确关于中心对称的两个图形中:

(1)对称中心在两个对称点的连线上;

(2)对称中心到两个对称点的距离相等。

4、例1是画出与已知图形关于已知点的对称图形。此内容易于理解,可让学生自己摸索得出画法,教师稍做归纳即可。

5、中心对称的性质是中心对称应用的核心,是作图的基础。

中心对称教学反思7

成功之处:

(1)本节课,我通过复习中心对称的定义和性质,大胆的放手让学生自主画图,使学生顺利的找到了要学的新知识与已学知识之间的联系,通过学生的观察顺利得到了中心对称图形的定义和性质,学生理解的很准确。

(2)通过欣赏图片,比如奥迪、现代等车标,精美的地毯、风车、电风扇等,激发了学生的学习兴趣。

(3)练习问题的设置能够让学生主动参与到学习中来,例如在判断扑克牌中哪些是中心对称图形的探究活动中,师生的相互沟通调动了学生的积极性,培养了学生的相互合作能力;通过问题的解决,培养了学生独立思考的能力,激发出学生的积极思维的火花。

(4)通过4道小练习检测了学生对知识的掌握情况,课堂实践证明学生掌握了中心对称图形的概念,会判断一个图形是否为中心对称图形。

不足之处:

(1)拓展延伸没有进行,因为时间把握得不很理想。

(2)创设情境方面做得还不足,应在这方面继续加强,更加重视创设情境的作用。

《中心对称教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式